Discipline: Math & Sc	Semester: 1 st	Name of the teaching faculty: Satya Narayan Tripathy (Sr Lect. In Physics)
Subject: Engg. Physics Lab (Pr.2a)	No. of days/week class allotted: 04	Semester from date: 25.10.2021 To date: 14.2.2022 No. of weeks: 15
Subject Course Outcomes		CO 1: Identify physical quantities& represent them as scalars & vectors to solve related problems.
		CO 2: Understand concepts of rest, motion & projectile motion & hence solve related problems.
		CO 3: Define work, Friction & solve related problems
		CO 4: Define & use the concepts of gravitation, wave motion, heat & optics to solve real life problems.
		CO 5: Explain the concepts of electrostatics, magneto statics, current & magnetism in the context of engineering.
		CO 6: Understand LASER & its Applications.
Week	Class Day	Practicals
1 81	1 st 2 nd 3 rd & 4th	To find volume of a solid cylinder using a Vernier Calipers
2 nd	1 st & 2 nd	To find volume of a solid cylinder using a Vernier Calipers
	3 rd & 4 th	To find volume of a hollow cylinder using a Vernier Calipers
3 rd	1 st 2 nd 3 rd & 4th	To find volume of a hollow cylinder using a Vernier Calipers
4 th	1 st 2 nd 3 rd & 4 th	To find the cross sectional area of a wire using screw gauge
5 th	1 st & 2 nd	To find the cross sectional area of a wire using screw gauge
	3 rd & 4 th	To find the thickness and volume of a glass piece using a screw gauge
6 th	1st 2nd 3rd & 4th	To find the thickness and volume of a glass piece using a screw gauge
7^{th}	1 st 2 nd 3 rd & 4 th	To determine the radius of curvature of convex surface using a Spherometer
8 th	1 st & 2 nd	To determine the radius of curvature of convex surface using a Spherometer
	4 th & 3 rd	To determine the radius of curvature of concave surface using a Spherometer.
9 th	1st 2nd 3rd & 4th	To determine the radius of curvature of concave surface using a Spherometer
10 th	1st 2nd 3rd & 4th	To verify Ohm's Law by Ammeter - Voltmeter method
11 th	1 st & 2 nd	To verify Ohm's Law by Ammeter – Voltmeter method
	3 rd & 4 th	To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral points
12 th	1st 2nd 3rd & 4th	To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral point
13 th	1st 2nd 3rd & 4th	To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points
14 th	1 st & 2 nd	To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points
	3 rd & 4 th	To find the time period of a simple pendulum and determine acceleration due to gravity
15 th	1st 2nd 3rd & 4th	To find the time period of a simple pendulum and determine acceleration due to gravity
2 1		1 ahr = 21

HOD (Math & Sc)

Satya Narayan Tripathy Lect. Physics GP Kraput