Discipline: Math \& Sc	Semester: $1^{\prime \prime}$	Name of the teaching faculty: Satya Narayan Tripathy (Sr Lect. In Physics)
Subject Enge. Physics Lab (Pr.2a)	No. of days/week class allotted: 04	Semester from date: $\quad 25.10 .2021$ To date: 14.2.2022 No. of weeks: 15
Subject Course Outcomes		CO 1: Identify physical quantities\& represent them as scalars \& vectors to solve related problems.
		CO 2: Understand concepts of rest, motion \& projectile motion \& hence solve related problems.
		CO 3: Define work, Friction \& solve related problems
		CO 4: Define \& use the concepts of gravitation, wave motion, heat \& optics to solve real life problems.
		CO 5: Explain the concepts of electrostatics, magneto statics, current \& magnetism in the context of engineering.
		CO 6: Understand LASER \& its Applications.
Week	Class Day	Practicals
$1^{\text {s }}$	$1^{\text {a }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To find volume of a solid cylinder using a Vernier Calipers
$2^{\text {nd }}$	$1^{\text {a }} \& 2^{\text {nd }}$	To find volume of a solid cylinder using a Vernier Calipers
	$3^{\text {rd }} \& 4^{\text {th }}$	To find volume of a hollow cylinder using a Vernier Calipers
$3^{\text {rd }}$	$1^{\text {s }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To find volume of a hollow cylinder using a Vernier Calipers
$4^{\text {th }}$	$1^{\text {sf }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To find the cross sectional area of a wire using screw gauge
$5^{\text {th }}$	$1^{s} \& 2^{\text {nd }}$	To find the cross sectional area of a wire using screw gauge
	$3^{\text {rd }} \& 4^{\text {th }}$	To find the thickness and volume of a glass piece using a screw gauge
$6^{\text {th }}$	$1^{\text {s }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To find the thickness and volume of a glass piece using a screw gauge
$7^{\text {th }}$	$1^{\text {s }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To determine the radius of curvature of convex surface using a Spherometer
$8^{\text {th }}$	$1^{\text {a }} \& 2^{\text {nd }}$	To determine the radius of curvature of convex surface using a Spherometer
	$4^{\text {th }} \& 3^{\text {rd }}$	To determine the radius of curvature of concave surface using a Spherometer.
$9^{\text {th }}$	$1^{\text {s }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To determine the radius of curvature of concave surface using a Spherometer
$10^{\text {th }}$	$1^{\text {ra }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To verify Ohm's Law by Ammeter - Voltmeter method
$11^{\text {th }}$	$1^{\text {a }} \& 2^{\text {nd }}$	To verify Ohm's Law by Ammeter - Voltmeter method
	$3^{\text {rd }} \& 4^{\text {th }}$	To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral points
$12^{\text {th }}$	$1^{\text {tr }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To trace lines of force due to a bar magnet with North pole pointing North and locate the neutral point
$13^{\text {th }}$	$1^{\text {sf }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points
$14^{\text {th }}$	$1^{\text {st }} \& 2^{\text {nd }}$	To trace lines of force due to a bar magnet with North pole pointing South and locate the neutral points
	$3^{\text {rd }} \& 4^{\text {th }}$	To find the time period of a simple pendulum and determine acceleration due to gravity
$15^{\text {th }}$	$1^{\text {rt }} 2^{\text {nd }} 3^{\text {rd }} \& 4^{\text {th }}$	To find the time period of a simple pendulum and determine acceleration due to gravity

Lect. Physics GP Kraput

